Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(1): e9764, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36713486

RESUMO

Space-use and demographic processes are critical to the persistence of populations across space and time. Despite their importance, estimates of these processes are often derived from a limited number of populations spanning broad habitat or environmental gradients. With increasing appreciation of the role fine-scale environmental variation in microgeographic adaptation, there is a need and value to assessing within-site variation in space-use and demographic patterns. In this study, we analyze 3 years of spatial capture-recapture data on the Eastern Red-backed Salamander collected from a mixed-use deciduous forest site in central Ohio, USA. Study plots were situated in both a mature forest stand and successional forest stand separated by <100-m distance. Our results showed that salamander density was reduced on successional plots, which corresponded with greater distance between nearest neighbors, less overlap in core use areas, greater space-use, and greater shifts in activity centers when compared to salamanders occupying the mature habitat. By contrast, individual growth rates of salamanders occupying the successional forest were significantly greater than salamanders in the mature forest. These estimates result in successional plot salamanders reaching maturity more than 1 year earlier than salamanders on the mature forest plots and increasing their estimated lifetime fecundity by as much as 43%. The patterns we observed in space-use and individual growth are likely the result of density-dependent processes, potentially reflecting differences in resource availability or quality. Our study highlights how fine-scale, within-site variation can shape population demographics. As research into the demographic and population consequences of climate change and habitat loss and alteration continue, future research should take care to acknowledge the role that fine-scale variation may play, especially for abiotically sensitive organisms with limited vagility.

2.
Ecol Evol ; 11(22): 15601-15621, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824777

RESUMO

Food acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, likely achieved by targeting areas with high prey availability. However, it is debated whether prey availability drives fine-scale habitat selection for predators. We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey. We used passive infrared camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) to generate variables of prey availability across the study area and used whether a snake was observed in a foraging location or not to model optimal foraging in timber rattlesnakes. Our models of small mammal spatial distributions broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared with Peromyscus spp. We found the spatial distribution of cumulative small mammal encounters (i.e., overall prey availability), rather than the distribution of any one species, to be highly predictive of snake foraging. Timber rattlesnakes appear to forage where the probability of encountering prey is greatest. Our study provides evidence for fine-scale optimal foraging in a low-energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.

3.
Conserv Physiol ; 8(1): coaa019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274066

RESUMO

The field of conservation physiology strives to achieve conservation goals by revealing physiological mechanisms that drive population declines in the face of human-induced rapid environmental change (HIREC) and has informed many successful conservation actions. However, many studies still struggle to explicitly link individual physiological measures to impacts across the biological hierarchy (to population and ecosystem levels) and instead rely on a 'black box' of assumptions to scale up results for conservation implications. Here, we highlight some examples of studies that were successful in scaling beyond the individual level, including two case studies of well-researched species, and using other studies we highlight challenges and future opportunities to increase the impact of research by scaling up the biological hierarchy. We first examine studies that use individual physiological measures to scale up to population-level impacts and discuss several emerging fields that have made significant steps toward addressing the gap between individual-based and demographic studies, such as macrophysiology and landscape physiology. Next, we examine how future studies can scale from population or species-level to community- and ecosystem-level impacts and discuss avenues of research that can lead to conservation implications at the ecosystem level, such as abiotic gradients and interspecific interactions. In the process, we review methods that researchers can use to make links across the biological hierarchy, including crossing disciplinary boundaries, collaboration and data sharing, spatial modelling and incorporating multiple markers (e.g. physiological, behavioural or demographic) into their research. We recommend future studies incorporating tools that consider the diversity of 'landscapes' experienced by animals at higher levels of the biological hierarchy, will make more effective contributions to conservation and management decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...